

Islamabad Campus

Semester – Spring 2019 Solution Calculus-II

Question # 1:

Verify by substitution that $y_1 = e^x$ and $y_2 = e^{-x}$ are solution of the ODE y'' - y = 0, solve for the initial value problem y(0) = 6 and $y'^{(0)} = -2$.

Solution:

Let's check:

$$y_1 = e^x$$

$$y'_1 = e^x, y''_1 = e^x$$

$$y'' - y = 0$$

$$e^x - e^x = 0$$

$$0 = 0, hence proved.$$

Now let's check:

$$y_2 = e^{-x}$$

 $y'_2 = -e^{-x}, y''_2 = e^{-x}$
 $y'' - y = 0$
 $e^{-x} - e^{-x} = 0$
 $0 = 0, hence\ proved.$

As y_1 and y_2 are the solutions of the given ODE the general solution is:

$$y(x) = c_1 y_1 + c_2 y_2$$

 $y(x) = c_1 e^x + c_2 e^{-x}$

Now for particular solution:

$$y'(x) = c_1 e^x - c_2 e^{-x}$$

$$y(0) = c_1 e^0 + c_2 e^{-0} \Rightarrow 6 = c_1 + c_2 \Rightarrow (1)$$

$$y'(0) = c_1 e^0 - c_2 e^{-0} \Rightarrow -2 = c_1 - c_2 \Rightarrow (2)$$

Now add eq (1) and eq (2):

Hence:

$$v(x) = 2e^x + 4e^{-x}$$